DOI: https://doi.org/10.22141/2312-413x.8.1.2020.196167

The value of zinc in infectious diseases in children

S.O. Kramarov, V.V. Yevtushenko, O.M. Yevtushenko

Abstract


Zinc plays various roles in different biological processes and is important for cellular growth, cellular differentiation and metabolism. Its deficiency is associated with impaired growth and development in children and immune dysfunction with increased susceptibility to infections. According to the World Health Organization data, severe zinc deficiency is rare in humans, but mild to moderate deficiency is very common worldwide. This narrative review summarizes data about zinc impact on immune system, its role in inflammation and clinical aspects. Clinical use of zinc supplements among children with infectious diseases is aimed mainly to the correction of deficiency and, therefore, to the improvement of immune response. To date, there is evidence of the effectiveness of zinc supplements for the treatment and prevention of upper respiratory tract and intestinal infections.

Keywords


zinc; respiratory infection; infectious diarrhea; children; review

References


Hoogenraad T.U. Historyofzinctherapy. In: Copper and Zinc in Inflammatory and Degenerative Diseases. Springer Ne­therlands. 1998. P. 1-5.

Institute of Medicine. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. Consensus study report [Internet]. Washington, DC: The National Academies Press., 2001 [cited 2020 Jan 3]. Available from: https://www.nap.edu/search/?term=Dietary+Reference+Intakes+for+Vitamin+A %2C+Vitamin+K %2C+Arsenic %2C+Boron %2C+Chromium %2C+Copper %2C+Iodine %2C+Iron %2C+Manganese %2C+Molybdenum %2C+Nickel %2C+Silicon %2C+Vanadium %2C+and+Zinc.&x=13&y=10

Supplements NI of HO of D. Zinc — Health Professional Fact Sheet [Internet]. 2019 [cited 2019 Dec 22]. Available from: https://ods.od.nih.gov/factsheets/Zinc-HealthProfessional/#en2

Yanagisawa H. Zinc deficiency and clinical practice. Japan Med. Assoc. J. 2004. 47(8). Р. 359-64.

Ezzati M., Lopez A.D., Rodgers A., Murray C.J.L. Comparative Quantification of Health Risks. 2004.

Wessells K.R., Brown K.H. Estimating the Global Prevalence of Zinc Deficiency: Results Based on Zinc Availability in National Food Supplies and the Prevalence of Stunting. PLoS One. 2012 Nov 29. 7(11).

Roohani N., Hurrell R., Kelishadi R., Schulin R. Zinc and its importance for human health: An integrative review. Journal of Research in Medical Sciences. 2013. Vol. 18. P. 144-57.

Антоняк Г.Л., Важненко О.В., Бовт В.Д., Стефанишин О.М. Біологічна роль цинку в організмі людини і тварин. Біологія тварин. 2011. 13(1-2). Р. 17-31.

Gammoh N.Z., Rink L. Zinc in infection and inflammation. Nutrients. MDPI AG. 2017. Vol. 9.

Ohashi W., Fukada T. Contribution of zinc and zinc transporters in the pathogenesis of inflammatory bowel diseases. Journal of Immunology Research. Hindawi Limited. 2019. Vol. 2019.

Ogawa Y., Kinoshita M., Shimada S., Kawamura T. Zinc in keratinocytes and langerhans cells: Relevance to the epidermal homeostasis. Journal of Immunology Research. Hindawi Limited. 2018. Vol. 2018.

Liu M.J., Bao S., Gálvez-Peralta M., Pyle C.J., Rudawsky A.C., Pavlovicz R.E. et al. ZIP8 Regulates Host Defense through Zinc-Mediated Inhibition of NF-κB. Cell. Rep. 2013. 3(2). Р. 386-400.

Subramanian Vignesh K., Landero Figueroa J.A., Porollo A., Caruso J.A., Deepe G.S. Granulocyte macrophage-colony stimulating factor induced Zn sequestration enhances macrophage superoxide and limits intracellular pathogen survival. Immunity. 2013 Oct 17. 39(4). Р. 697-710.

Subramanian Vignesh K., Deepe G.S. Immunological orchestration of zinc homeostasis: The battle between host mechanisms and pathogen defenses. Arch. Biochem. Biophys. 2016 Dec 1. 611. Р. 66-78.

Botella H., Stadthagen G., Lugo-Villarino G., de Chastellier C., Neyrolles O. Metallobiology of host-pathogen interactions: An intoxicating new insight. Trends in Microbiology. 2012. Vol. 20. Р. 106-12.

Zygiel E.M., Nolan E.M. Transition Metal Sequestration by the Host-Defense Protein Calprotectin. Annu. Rev. Biochem. 2018 Jun 20. 87(1). Р. 621-43.

Nishida K., Uchida R. Regulatory mechanism of mast cell activation by zinc signaling. Pharmaceutical Society of Japan. 2017. Vol. 137. Р. 495-501.

Hojyo S., Fukada T. Roles of Zinc Signaling in the Immune System. Journal of Immunology Research. Hindawi Limi­ted. 2016. Vol. 2016.

Wessels I., Haase H., Engelhardt G., Rink L., Ucie­chowski P. Zinc deficiency induces production of the proinflammatory cytokines IL-1β and TNFα in promyeloid cells via epigenetic and redox-dependent mechanisms. J. Nutr. Biochem. 2013 Jan. 24(1). Р. 289-97.

Wessels I., Maywald M., Rink L. Zinc as a gatekeeper of immune function. Nutrients. MDPI AG. 2017. Vol. 9.

Couñago R.M., Ween M.P., Begg S.L., Bajaj M., Zuegg J., O’Mara M.L. et al. Imperfect coordination chemistry facilitates metal ion release in the Psa permease. Nat. Chem. Biol. 2014 Jan. 10(1). Р. 35-41.

Eijkelkamp B.A., Morey J.R., Ween M.P., Ong C.L.Y., McEwan A.G., Paton J.C. et al. Extracellular zinc competitively inhibits manganese uptake and compromises oxidative stress management in Streptococcus pneumoniae. PLoS One. 2014 Feb 18. 9(2).

Cornelissen C.N. Subversion of nutritional immunity by the pathogenic Neisseriae. Pathogens and Disease. Oxford University Press. 2018. Vol. 76.

Fitzsimmons L., Liu L., Porwollik S., Chakraborty S., Desai P., Tapscott T. et al. Zinc-dependent substrate-level phosphorylation powers Salmonella growth under nitrosative stress of the innate host response. PLoS Pathog. 2018 Oct 1. 14(10).

Freitas E., Cunha A., Aquino S., Pedrosa L., Lima S., Lima J. et al. Zinc Status Biomarkers and Cardiometabolic Risk Factors in Metabolic Syndrome: A Case Control Study. Nutrients [Internet]. 2017 Feb 22 [cited 2020 Jan 5]. 9(2). 175. Available from: http://www.mdpi.com/2072-6643/9/2/175.

Gupta M., Mahajan V.K., Mehta K.S., Chauhan P.S. Zinc therapy in dermatology: A review. Dermatology Research and Practice. Hindawi Publishing Corporation. 2014. Vol. 2014.

Lin P.H., Sermersheim M., Li H., Lee P.H.U., Steinberg S.M., Ma J. Zinc in wound healing modulation. Nutrients. MDPI AG. 2018. Vol. 10.

Jarosz M., Olbert M., Wyszogrodzka G., Młyniec K., Librowski T. Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling. Inflammopharmacology. Birkhauser Verlag AG. 2017. Vol. 25. P. 11-24.

Chickenpox | Prevention and Treatment | Varicella | CDC [Internet]. [cited 2020 Jan 5]. Available from: https://www.cdc.gov/chickenpox/about/prevention-treatment.html

Clinical Practice Guidelines: Chickenpox (varicella). The Royal Children’s Hospital Melbourne [Internet]. [cited 2020 Jan 5]. Available from: https://www.rch.org.au/clinicalguide/guideline_index/Chickenpox_(varicella)/

Singh M., Das R.R. Zinc for the common cold. Vol. 2015, Cochrane Database of Systematic Reviews. John Wiley and Sons Ltd, 2015.

Lassi Z.S., Moin A., Bhutta Z.A. Zinc supplementation for the prevention of pneumonia in children aged 2 months to 59 months. Cochrane Database Syst Rev [Internet]. 2016 Dec 4 [cited 2019 Dec 31]. Available from: http://doi.wiley.com/10.1002/14651858.CD005978.pub3

Sakulchit T., Goldman R.D. Zinc supplementation for pediatric pneumonia. Canadian Family Physician. College of Fami­ly Physicians of Canada. 2017. Vol. 63. Р. 763-5.

Haider B.A., Lassi Z.S., Ahmed A., Bhutta Z.A. Zinc supplementation as an adjunct to antibiotics in the treatment of pneumonia in children 2 to 59 months of age. Cochrane Database Syst Rev. 2011 Oct 5.

Yuan X., Qian S.Y., Li Z., Zhang Z.Z. Effect of zinc supplementation on infants with severe pneumonia. World J. Pediatr. 2016 May 1. 12(2). Р. 166-9.

Gulani A., Sachdev H.S. Zinc supplements for preventing otitis media. Cochrane Database Syst. Rev. [Internet]. 2014 Jun 29 [cited 2019 Dec 30]. Available from: http://doi.wiley.com/10.1002/14651858.CD006639.pub4

Lazzerini M., Wanzira H. Oral zinc for treating diarrhoea in children. Cochrane Database Syst Rev [Internet]. 2016 Dec 20 [cited 2019 Dec 31]. Available from: http://doi.wiley.com/10.1002/14651858.CD005436.pub5

Roy S.K., Hossain M.J., Khatun W., Chakraborty B., Chowdhury S., Begum A. et al. Zinc supplementation in children with cholera in Bangladesh: Randomised controlled trial. BMJ. 2008 Feb 2. 336(7638). Р. 266-8.

Patel A.B., Dibley M.J., Mamtani M., Badhoniya N., Kulkarni H. Influence of Zinc Supplementation in Acute Diarrhea Differs by the Isolated Organism. Int. J. Pediatr. 2010. 2010. Р. 1-9.

Yakoob M.Y., Theodoratou E., Jabeen A., Imdad A., Eisele T.P., Ferguson J. et al. Preventive zinc supplementation in developing countries: Impact on mortality and morbidity due to diarrhea, pneumonia and malaria. BMC Public Health. 2011. Vol. 11.

WHO | Zinc supplementation in the management of diarrhoea. WHO. World Health Organization, 2019.

Zinc: Health Benefits, Uses, Side Effects, Dosage & Interactions. RxList Inc. [Internet]. [cited 2020 Jan 6]. Available from: https://www.rxlist.com/zinc/supplements.htm




Copyright (c) 2020 ACTUAL INFECTOLOGY

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

© Publishing House Zaslavsky, 1997-2020

 

   Seo анализ сайта