DOI: https://doi.org/10.22141/2312-413x.8.5-6.2020.217953

Azithromycin in modern pediatric practice

S.O. Kramarov, V.V. Yevtushenko

Abstract


Azithromycin has been used in pediatric practice for many years to treat a wide range of medical problems. This review provides data on the pharmacological and pharmacokinetic properties of azithromycin. It tells about the experience of using this drug in various diseases in children and the role of azithromycin from the position of evidence-based medicine and mo­dern international recommendations. In particular, azithromycin is recommended as the antibiotic of choice for empirical therapy and selective therapy of acute intestinal infections in children, for etiotropic treatment of pertussis, Lyme disease and for long-term therapy for cystic fibrosis. It is recommended in the treatment of respiratory infections caused by atypical pathogens.


Keywords


infections; antibiotics; azithromycin; treatment; children; review

References


WHO. WHO | Macrolides (Review). WHO. Published online 2010. Accessed April 25, 2018. http://www.who.int/selection_medicines/committees/subcommittee/2/macrolides/en/

Xu P., Zeng L., Xiong T. et al. Safety of azithromycin in paediatrics: A systematic review protocol. BMJ Paediatr. Open. 2019. 3(1). e000469. doi: 10.1136/bmjpo­2019­000469.

Jelić D., Antolović R. From erythromycin to azithromycin and new potential ribosome­binding antimicrobials. Antibiotics. 2016. 5(3). doi: 10.3390/antibiotics5030029.

Ovetchkine P., Rieder M.J., Canadian Paediatric Society, Drug Therapy and Hazardous Substances Committee CP, Committee DT and HS. Azithromycin use in paediatrics: A practical overview. Paediatr. Child Health. 2013. 18(6). 311­316. Accessed April 23, 2018. http://www.ncbi.nlm.nih.gov/pubmed/24421702

McMullan B.K., Mostaghim M. Prescribing azithromycin. Aust. Prescr. 2015. 38(3). 87­89. doi: 10.18773/austprescr.2015.030.

Parnham M.J., Haber V.E., Giamarellos­Bourboulis E.J. et al. Azithromycin: Mechanisms of action and their relevance for clinical appli-cations. Pharmacol. Ther. 2014. 143(2). 225­245. doi: 10.1016/J.PHARMTHERA.2014.03.003.

Wang J., Xie L., Wang S., Lin J., Liang J., Xu J. Azithro­mycin promotes alternatively activated macrophage phenotype in systematic lu-pus erythematosus via PI3K/Akt signaling pathway. Cell Death Dis. 2018. 9(11). 1­13. doi: 10.1038/s41419­018­1097­5.

Lieberthal A.S., Carroll A.E., Chonmaitree T. et al. The diagnosis and management of acute otitis media. Pediatrics. 2013. 131(3). e964­99. doi: 10.1542/peds.2012­3488.

Royer S., Demerle K.M., Dickson R.P., Prescott H.C. Shorter versus longer courses of antibiotics for infection in hospitalized patients: A systematic review and meta­analysis. J. Hosp. Med. 2018. 13(5). 336­342. doi: 10.12788/jhm.2905.

Schaad U.B., Kellerhals P., Altwegg M. et al. Azithromycin versus penicillin V for treatment of acute group A streptococcal pharyngitis. Pediatr. Infect. Dis. J. 2002. 21(4). 304­308. doi: 10.1097/00006454­200204000­00009.

Michelow I.C., Olsen K., Lozano J. et al. Epidemiology and clinical characteristics of community­acquired pneumonia in hospitalized children. Pediatrics. 2004. 113(4). 701­707. Accessed May 2, 2018. http://www.ncbi.nlm.nih.gov/pubmed/15060215

Kurz H., Göpfrich H., Huber K. et al. Spectrum of pathogens of in­patient children and youths with community acquired pneumonia: a 3 year survey of a community hospital in Vienna, Austria. Wien Klin. Wochenschr. 2013. 125(21­22). 674­679. doi: 10.1007/s00508­013­0426­z.

Bradley J.S., Byington C.L., Shah S.S. et al. The Mana­gement of Community­Acquired Pneumonia in Infants and Children Older Than 3 Months of Age: Clinical Practice Guidelines by the Pediatric Infectious Diseases Society and the Infectious Di­seases Society of America. Clin. Infect. Dis. 2011. 53(7). e25­e76. doi: 10.1093/cid/cir531.

Kelley M.A., Weber D.J., Gilligan P., Cohen M.S. Breakthrough pneumococcal bacteremia in patients being treated with azithromycin and clarithromycin. Clin. Infect. Dis. 2000. 31(4). 1008­1011. doi: 10.1086/318157.

Guarino A., Ashkenazi S., Gendrel D., Lo Vecchio A., Shamir R., Szajewska H. ESPGHAN/ESPID Evidence­based Guidelines for the Management of Acute Gastroenteritis in Children in Europe: Update 2014. J. Pediatr. Gastroenterol. Nutr. 2014. 39(1). 132­152. doi: 10.1097/MPG.0000000000000375.

Shane A.L., Mody R.K., Crump J.A. et al. 2017 Infectious Diseases Society of America Clinical Practice Guidelines for the Diagnosis and Management of Infectious Diarrhea. Clin. Infect. Dis. 2017. 65(12). 1963­1973. doi: 10.1093/cid/cix959.

Brown J.D., Willcox S.J., Franklin N. et al. Shigella species epidemiology and antimicrobial susceptibility: the implications of emerging azithromycin resistance for guiding treatment, guidelines and breakpoints. J. Antimicrob. Chemother. 2017. 72(11). 3181­3186. doi: 10.1093/jac/dkx268.

Darton T.C., Tuyen H.T., The H.C. et al. Azithromycin Resistance in Shigella spp. in Southeast Asia. Antimicrob. Agents Chemother. 2018. 62(4). e01748­17. doi: 10.1128/AAC.01748­17.

Vlieghe E.R., Phe T., De Smet B. et al. Azithromycin and Ciprofloxacin Resistance in Salmonella Bloodstream Infections in Cambodian Adults. Ryan E.T. ed. PLoS Negl. Trop. Dis. 2012. 6(12). e1933. doi: 10.1371/journal.pntd.0001933.

Hassing R.­J., Goessens W.H.F., van Pelt W. et al. Salmonella Subtypes with Increased MICs for Azithromycin in Travelers Returned to the Netherlands. Emerg. Infect. Dis. 2014. 20(4). 705­708. doi: 10.3201/eid2004.131536.

Mukherjee P., Ramamurthy T., Mitra U., Mukhopad­hyay A.K. Emergence of high­level azithromycin resistance in Campylobacter jejuni isolates from pediatric diarrhea patients in Kolkata, India. Antimicrob. Agents Chemother. 2014. 58(7). 4248. doi: 10.1128/AAC.02931­14.

Fry N.K., Duncan J., Vaghji L., George R.C., Harrison T.G. Antimicrobial susceptibility testing of historical and recent clinical isolates of Bordetella pertussis in the United Kingdom using the Etest method. Eur. J. Clin. Microbiol. Infect. Dis. 2010. 29(9). 1183­1185. doi: 10.1007/s10096­010­0976­1.

Jakubů V., Zavadilová J., Fabiánová K., Urbášková P. Trends in the Minimum Inhibitory Concentrations of Erythromycin, Clarithromy-cin, Azithromycin, Ciprofloxacin, and Trime­thoprim/Sulfamethoxazole for Strains of Bordetella pertussis Isolated in the Czech Republic in 1967–2015. Cent. Eur. J. Public Health. 2017. 25(4). 282­286. doi: 10.21101/cejph.a4948.

Amirthalingam G. and PGG. Guidelines for the Public Health Management of Pertussis. Heal. Prot. Agency. 2016 (December). 13­16.

Graham L. CDC Releases Guidelines on Antimicrobial Agents for the Treatment and Postexposure Prophylaxis of Pertussis. Am. Fam. Physician. 2006. 74(2). 333­336. Accessed April 24, 2018. https://www.aafp.org/afp/2006/0715/p333.html

Altunaiji S., Kukuruzovic R., Curtis N., Massie J. Antibiotics for whooping cough (pertussis). Cochrane Database Syst. Rev. 2007. 3. doi: 10.1002/14651858.CD004404.pub3.

Santino I., Scazzocchio F., Ciceroni L., Ciarrocchi S., Sessa R., Del Piano M. In Vitro Susceptibility of Isolates of Borrelia Burgdorferi S.L. to Antimicrobial Agents. Int. J. Immunopathol. Pharmacol. 2006. 19(3). 545­549. doi: 10.1177/039463200601900310.

Wormser G.P., Dattwyler R.J., Shapiro E.D. et al. The Clinical Assessment, Treatment, and Prevention of Lyme Disease, Human Granu-locytic Anaplasmosis, and Babesiosis: Clinical Practice Guidelines by the Infectious Diseases Society of America. Clin. Infect. Dis. 2006. 43(9). 1089­1134. doi: 10.1086/508667.

Barsic B., Maretic T., Majerus L., Strugar J. Comparison of azithromycin and doxycycline in the treatment of erythema migrans. Infec-tion. 28(3). 153­156. Accessed April 25, 2018. http://www.ncbi.nlm.nih.gov/pubmed/10879639

Cameron D.J., Johnson L.B., Maloney E.L. Evidence assessments and guideline recommendations in Lyme disease: the clinical manage-ment of known tick bites, erythema migrans rashes and persistent disease. Expert. Rev. Antiіnfect. Ther. Published online August 9, 2014. Accessed May 24, 2016. http://www.tandf­online.com/doi/full/10.1586/14787210.2014.940900

NICE. Lyme disease. NICE guideline [NG95]. Published 2018. https://www.nice.org.uk/guidance/ng95

Hofmann H., Fingerle V., Hunfeld K.­P. et al. Cutaneous Lyme borreliosis: Guideline of the German Dermatology Society. Ger. Med. Sci. 2017. 15. doi: 10.3205/000255.

Southern K.W., Barker P.M., Solis­Moya A., Patel L. Macrolide antibiotics for cystic fibrosis. Cochrane Database Syst. Rev. Published online November 14, 2012. doi: 10.1002/14651858.CD002203.pub4.

Emiralioğlu N., Öztürk Z., Yalçın E., Doğru D., Özçelik U., Kiper N. Long term azithromycin therapy in patients with cystic fibrosis. Turk. J. Pediatr. 2016. 58(1). 34­40. http://www.ncbi.nlm.nih.gov/pubmed/27922234

Pradal U., Delmarco A., Morganti M., Cipolli M., Mini E., Cazzola G. Long­term azithromycin in cystic fibrosis: another possible mecha-nism of action? J. Chemother. 2005. 17(4). 393­400. doi: 10.1179/joc.2005.17.4.393.

Principi N., Blasi F., Esposito S. Azithromycin use in patients with cystic fibrosis. Eur. J. Clin. Microbiol. Infect. Dis. 2015. 34(6). 1071­1079. doi: 10.1007/s10096­015­2347­4.

Cystic Fibrosis: Diagnosis and Management NICE Guideline. 2017. Accessed October 18, 2020. www.nice.org.uk/guidance/ng78

Gielen V., Johnston S.L., Edwards M.R. Azithromycin induces anti­viral responses in bronchial epithelial cells. Eur. Respir. J. 2010. 36(3). 646­654. doi: 10.1183/ 09031936.00095809.

Tran D.H., Sugamata R., Hirose T. et al. Azithromycin, a 15­membered macrolide antibiotic, inhibits influenza A(H1N1)pdm09 virus in-fection by interfering with virus internalization process. J. Antibiot. (Tokyo). 2019. 72(10). 759­768. doi: 10.1038/s41429­019­0204­x.

Zeng S., Meng X., Huang Q. et al. Spiramycin and azithromycin, safe for administration to children, exert antiviral activity against enter-ovirus A71 in vitro and in vivo. Int. J. Antimicrob. Agents. 2019. 53(4). 362­369. doi: 10.1016/j.ijantimicag.2018.12.009.

Retallack H., Di Lullo E., Arias C. et al. Zika virus cell tropism in the developing human brain and inhibition by azithromycin. Proc. Natl Acad. Sci. USA. 2016. 113(50). 14408­14413. doi: 10.1073/pnas.1618029113.

Schögler A., Kopf B.S., Edwards M.R. et al. No­vel antiviral properties of azithromycin in cystic fibrosis airway epithelial cells. Eur. Respir. J. 2015. 45(2). 428­439. doi: 10.1183/09031936.00102014.

Andreani J., Le Bideau M., Duflot I. et al. In vitro tes­ting of combined hydroxychloroquine and azithromycin on SARS­CoV­2 shows synergistic effect. Microb. Pathog. 2020. 145. 104228. doi: 10.1016/j.micpath.2020.104228.

Gautret P., Lagier J.C., Parola P. et al. Hydroxychloroquine and azithromycin as a treatment of COVID­19: results of an open­label non­randomized clinical trial. Int. J. Antimicrob. Agents. 2020. 56(1). 105949. doi: 10.1016/j.ijantimicag.2020.105949.

Echeverría­Esnal D., Martin­Ontiyuelo C., Navarrete­Rouco M.E. et al. Azithromycin in the treatment of COVID­19: a review. Expert Rev. Antiіnfect Ther. Published online October 6, 2020. 1­17. doi: 10.1080/14787210.2020.1813024.

Зупанец И., Безуглая Н., Либина В., Орлова И., Кудрис И., Кувайсков Ю. Оценка взаимозаменяемости Азимеда — биоэквива-лентность доказана! Ліки України. 2013. 1(167). 80­83.




Copyright (c) 2020 ACTUAL INFECTOLOGY

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

© Publishing House Zaslavsky, 1997-2020

 

   Seo анализ сайта