Diagnostic significance of detecting neutralizing antibodies to SARS-CoV-2

Authors

  • H.L. Kyseliova Dila Medical Laboratory, Kyiv, Ukraine
  • K.V. Voronova Dila Medical Laboratory, Kyiv, Ukraine
  • V.M. Isaiev Dila Medical Laboratory, Kyiv, Ukraine

DOI:

https://doi.org/10.22141/2312-413X.9.1.2021.228823

Keywords:

coronavirus disease, SARS-CoV-2, spike S protein, neutralizing antibodies, СOVID-19, immune response

Abstract

Coronavirus disease is an infectious disease caused by a recently discovered coronavirus called SARS-CoV-2. Coronavirus disease caused by the SARS-CoV-2 continues to be the world’s greatest global challenge, both in terms of searching for treatment and prevention methods, and developing new diagnostic directions. One of the new directions of serological diagnosis is the possibility of determining neutralizing antibodies to SARS-CoV-2. This is a fully automated highly sensitive test for detecting neutralizing antibo­dies to RBD domain in S1, which is performed by immunochemiluminescent analysis and allows the simultaneous detection of total neutralizing antibodies (IgM + IgG) that increases the sensitivity of testing because the order of IgM and IgG antibodies is individual.

References

https://www.worldometers.info/coronavirus/?utm_campaign=homeAdUOA?Si.

https://www.who.int/ru/health-topics/coronavirus/coronavirus#tab=tab_1.

Харченко Е.П. Коронавирус SARS-Cov-2: особенности структурных белков, контагиозность и возможные иммунные коллизии. Эпидемиология и вакцинопрофилактика. 2020. 19(2). 13-30. https://doi: 10.31631/2073-3046-2020-19-2-13-30.

Robson B. COVID-19 Coronavirus spike protein analysis for synthetic vaccines, a peptidomimetic antagonist, and therapeutic drugs, and analysis of a proposed achilles’ heel conserved region to minimize probability of escape mutations and drug resistance. Comput. Biol. Med. 2020 Jun. 121. 103749. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7151553. doi: 10.1016/j.compbiomed.2020.103749.

https://phc.org.ua/

Seow J., Graham С., Doores K.J. et al. Longitudinal observation and decline of neutralizing antibody responses in the three months following SARS-CoV-2 infection in humans. Nature Microbiology. 2020. Vol. 5. Р. 1598-1607. https://www.nature.com/articles/s41564-020-00813-8.

Zhou G., Zhao Q. Perspectives on therapeutic neutralizing antibodies against the Novel Coronavirus SARS-CoV-2. Int. J. Biol. Sci. 2020. 16(10). 1718-23. Epub 2020/04/01. pmid: 32226289; PubMed Central PMCID: PMC7098029.

French M.A., Moodley Y. The role of SARS-CoV-2 antibodies in COVID-19: Healing in most, harm at times. Respirology. 2020. 25(7). 680-2. Epub 2020/05/22. pmid: 32436320; PubMed Central PMCID: PMC7280731.

Addetia A., Crawford K.H.D., Dingens A. et al. Neutralizing antibodies correlate with protection from SARS-1 CoV-2 in humans during a 2-fishery vessel outbreak with high attack rate. medRxiv preprint. 2020. https://doi.org/10.1101/2020.08.13.20173161.

Guo L. et al. Profiling early humoral response to diagnose novel coronavirus disease (COVID-19). Clin. Infect. Dis. 2020. https://doi.org/10.1093/cid/ciaa310.

Ni L. et al. Detection of SARS-CoV-2-specific humoral and cellular immunity in COVID-19 convalescent individuals. Immunity. 2020. https://doi.org/10.1016/j.immuni.2020.04.023.

Yu H. et al. Distinct features of SARS-CoV-2-specific IgA response in COVID-19 patients. Eur. Respir. J. 2020. https://doi.org/10.1183/13993003.01526-2020.

Suthar M.S. et al. Rapid Generation of Neutralizing Antibody Responses in COVID-19 Patients. Cell Reports Medicine. 2020. 1. 100040.

Robbiani D.F. et al. Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Nature. 2020. 584. 437-442.

Houlihan C.F. et al. Pandemic peak SARS-CoV-2 infection and seroconversion rates in London frontline health-care workers. Lancet Lond. Engl. 2020. 396. e6-e7.

Chen Y. et al. High SARS-CoV-2 antibody prevalence among healthcare workers exposed to COVID-19 patients. J. Infect. 2020. 81. 420-426.

Rudberg A.-S. et al. SARS-CoV-2 exposure, symptoms and seroprevalence in healthcare workers in Sweden. Nat. Commun. 2020. 11. 5064.

Wajnberg A., Amanat F., Firpo A. Robust neutralizing antibodies to SARS-CoV-2 infection persist for months. Science. 4 Dec 2020. Vol. 370. Issue 6521. P. 1227-123. DOI: 10.1126/science.abd7728 https://science.sciencemag.org/content/370/6521/1227.

https://www.innatoss.com/en.

https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-first-test-detects-neutralizing-antibodies-recent-or#:~:text=Today%2C%20the%20U.S.%20Food%20and,2%20viral%20infection%20of%20cells.

Moore J.P., Klasse P.J., Silvestri G. COVID-19 Vaccines: “Warp Speed” Needs Mind Melds, Not Warped Minds / Editor American Society for Microbiology. DOI: 10.1128/JVI.01083-20.

Kellam Р., Barclay W. The dynamics of humoral immune responses following SARS-CoV-2 infection and the potential for reinfection. Journal of General Virology. 2020. Vol. 101. Issue 8. https://doi.org/10.1099/jgv.0.001439.

Mo H., Zeng G., Ren X. et al. Longitudinal profile of antibodies against SARS-coronavirus in SARS patients and their clinical significance. PMID: 16423201. PMCID: PMC7192223. DOI: 10.1111/j.1440-1843.2006.00783.x. https://pubmed.ncbi.nlm.nih.gov/16423201.

Petersen K.M. et al. Comparing SARS-CoV-2 with SARS-CoV and influenza pandemics. Lancet Infect. 2020. 20. e238-e244.

Callow K.A., Parry H.F., Sergeant M., Tyrrell D.A. The time course of the immune response to experimental coronavirus infection of man. Epidemiol. Infect. 1990. 105. 435-446.

Wang M. et al. Antibody dynamics of 2009 influenza A (H1N1) virus in infected patients and vaccinated people in China. PLoS ONE. 2011. 6. e16809.

Wrapp D., Wang N., Corbett K.S. et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 13 Mar 2020. Vol. 367. Issue 6483. Р. 1260-1263.

Published

2021-04-22

Issue

Section

To Help the Practitioner