Recognition of Artificially Induced Outbreaks of Infectious Diseases

M.V. Supotnitsky


Currently epidemiological approaches to the investigation of biological terrorist attacks are based on the same concepts that are used for epidemiological investigation of epidemic processes (outbreaks) that have natural causes. Therefore, the aim of this paper — to base approaches to identification of artificially induced outbreaks of infectious diseases. It is found that artificial epidemic processes (outbreaks) have distinct epidemiologic, etiologic and clinical aspects. Currently there are two types of artificial epidemic process development: 1) when the biological agent is used once by criminals; 2) when it is used repeatedly. Characteristic features of the epidemic process of the first type can be regarded compressed epidemic curve with a peak of incidence fit into the average value of the incubation period of the disease, and localization of an epidemic outbreak (epidemiology of point source). The second type is characterized by stretched epidemic curve far exceeds the duration of the incubation period of the disease. Common to both types of artificial epidemic process will be impossible epidemiology — feature of artificial epidemic processes, indicating that in nature there are no conditions for their development, and impossible clinical form of a disease, ie clinical form not occurring under natural infection, such as pathology of fine aerosol, which may be caused only by spray with a dispersed phase of 1–5 microns. In an epidemiological investigation of artificially induced outbreak of infectious disease there are three phases: the collection of epidemiological data, descriptive and analytical stage. Analysis of features of lesions by microorganisms that are potential agents of biological weapons, has shown that clinic, pathoanatomy, pathohistology, molecular genetic research methods provide sufficient information to recognize the artificial nature of such outbreaks of infectious disease. However, their specificity is that in fact they form an independent (third) part of epidemiology, which has its own methodology, goals and objectives — epidemiology of artificial epidemic processes and biological lesions.


biological terrorist attack; epidemiology; smallpox; hemorrhagic fever; glanders; melioidosis; plague; anthrax


Kaufmann A.F., Meltzer M.I., Schmid G.P. The economic impact of a bioterrorist attack: are prevention and postattack intervention programs justifiable? // Emerg. Infect. Dis. — 1997. — 3(2). — 83-94.

Franz D.R., Jahring P.B., Friedlander A.M., Hoover D.L., Byrne W.R., Pavlin J.A. et al. Clinical recognition and management of patiensts exposed to biological warfare agents // JAMA. — 1997. — 278(5). — 399-411.

Pavlin J.A. Epidemiology of bioterrorism // Emerg. Infect. Dis. — 1999. — 5(4). — 528-30.

Dembek Z. Modeling for bioterrorism incidents. Biological weapons defense // N.J. — 2005.

Torok T.J., Tauxe R.V., Wise R.P., Livengood J.R., Sokolow R., Mauvais S. et al. A large community outbreak of salmonellosis caused by intentional contamination of restaurant salad bare // JAMA. — 1997. — 278(5). — 389-95.

Dewan P., Fry A., Laserson K., Quinn C.P., Hayslett J.A., Broyles L.N. et al. Inhalational anthrax outbreak among postal workers, Washington, DC, 2001 // Emerg. Infect. Dis. — 2002. — 8. — 1066-72.

Супотницкий М.В. Эпидемиология искусственных эпидемических процессов как третий раздел эпидемиологии // Новости медицины и фармации. — 2013. — (4). — 16–19 (5). — 16-9.

Черкасский Б.Л. Руководство по общей эпидемиологии. — М., 2001.

Бакулов И.А., Ведерников В.А., Семенихин А.Л. Эпизо-отология с микробиологией. — М., 1997.

US Departments of the Army, Navy and Air Force. Employment of chemical and biological agents. March; 1966 (FM 3-10; NWIP 3612; AFM 355-4 FMFM 11-3).

Jernigan D.B., Raghunathan P.L., Bell B.P., Brechner R., Bresnitz E.A., Butler J.C. et al. Investigation of bioterrorism-related anthrax, United States, 2001: epidemiologic findings // Emerg. Infect. Dis. — 2002. — 8. — 1019-28.

Takahashi H., Keim P., Kaufmann C.K., Kimothy L.S., Kiyosu T. et al. Bacillus anthracis incident, Kameido, Tokyo, 1993 // Emerg. Infect. Dis. — 2004. — 10(1). — 117-9.

Atlas R.M. Combating the threat of biowarfare and bioterrorism // BioScience. — 1999. — 49(6). — 465-77.

Ivins B.E., Welkos S.L., Knudson G.B. Little SF. Immunization against anthrax with aromatic compound dependent (Aro1) mutants of Bacillus anthracis and with recombinant strains of Bacillus subtilis that produce anthrax protective antigen // Infect. Immun. — 1990. — 58(2). — 303-8.

Lalitha M., Thomas M. Penicillin resistance in Bacillus anthracis // Lancet. — 1997. — 349(9064). — 1522.

Guiyoule A., Gerbaund G., Buchrieser C., Galimand M., Rahalison L., Chanteau S. et al. Transferable plasmid-mediated resistance of Yersinia pestis // Emerg. Infect. Dis. — 2001. — 7. — 43-8.

Дмитриев И. Случай массового подкожного заражения сибирской язвой во время антирабических прививок // Гигиена и эпидемиология. — 1928. — (10). — 64-74.

Ramsay C.N., Stirling A., Smith J., Hawkins G., Brooks T., Hood J. et al. An outbreak of infection with Bacillus anthracis in injec-ting drug users in Scotland // Eurosurveillance. — 2010. — 15. — Is. 2.

Ringertz S.H., Hoiby E.A., Jensenius M., Mohlen J., Caugant, Arne D.A., Fossum M.K. Injectional anthrax in a heroin skin-popper // Lancet. — 2000. — 356(9241). — 1574-5.

Супотницкий М.В. Биологическая война. — М., 2013.

Огарков В.И., Гапочко Н.Г. Аэрогенная инфекция. — М., 1975.

Wiener S.L. Strategies of Biowaffarae Defense // Military Medicine. — 1987. — 152(1). — 25-8.

Hoffmaster A.R., Fitzgerald C.C., Mayer L.W., Popovic T. Molecular subtyping of Bacillus anthracis and the 2001 bioterrorism associated anthrax outbreak, United States // Emerg. Infect. Dis. — 2002. — 8(10). — 1011-6.

Kolavic S.A., Kimura S.L., Simone S.L., Slutsker L., Barth S., Haley C.E. An outbreak of Shigella dysenteriae type 2 among laboratory workers due to intentional food contamination // JAMA. — 1997. — 278(5). — 396-8.

Богданов ИЛ. К клинике кишечной формы антракса // Клиническая медицина. — 1935. — 8. — 1228-32.

Guarner J., Jernigan J.A., Wun Ju Shieh, Tatti K., Flannagan L.M., Stephens D.S., Popovic T. et al. Pathology and pathogenesis of bioterrorism-related inhalational anthrax // Amer. J. Pathol. — 2003. — 163(2). — 701-9.

Литусов Н.В., Васильев Н.Т., Васильев П.Г., Евстигнеев В.И., Равилов А.З., Щербаков В.Н. и др. Патоморфогенез сибирской язвы. — М., 2002.

Powell A., Crozier J., Hodgson H., David J., Galloway A. A case of septicaemic anthrax in an intravenous drug user // BMC Infectious Diseases 2011. — Available from

Sidell F.R., Tafuqi E.T., Franz D.R. Medical aspects of chemical and biological warfare. — Washington, 1997.

Блюменталь Н. Бактериологическая война (сокращенный обзор) // Военно-медицинский журнал. — 1932. — III(2). — 167-75.

Материалы судебного процесса по делу бывших военнослужащих японской армии, обвиняемых в подготовке и применении бактериологического оружия. — М., 1950.

Супотницкий М.В., Супотницкая Н.С. Очерки истории чумы. — М., 2006.

Wolf-Watz H., Portnoy D., Bolin I., Falkow S. Transfer of the virulence plasmid of Yersinia pestis to Yersinia pseudotuberculosis // Infec. Immun. — 1985. — 48(1). — 241-3.

Anisimov A.P., Lindler L.E., Pier G.B. Intraspecific diversity of Yersinia pestis // Clin. Microbiol. Rev. — 2004. — 17(2). — 434-64.

Army FM 8-284. Navy NAVMED P15042 Air Force

AFMAN (I) 44–156 Marine Corps MCRP 4–11.1C. 2000.

Олсуфьев Н.Г., Руднев Г.П. Руководство по микробио-логии, клинике и эпидемиологии инфекционных болезней. — М., 1966. — Т. VII, Туляремия. — С. 190-234.

Ellis J., Oyston P., Green M., Richard W. Tularemia // Clin. Microbiol. Rev. — 2002. — 15(4). — 631-46.

Hauri A.M., Hofstetter H., Seibold E., Kaysser P., Eckert J., Neubauer H., Splettstoesser W.D. Investigating an airborne tularemia outbreak, Germany // Emerg. Infect. Dis. — 2010. — 16(2). — 238-43.

Day W.C., Berendt R.F. Experimental tularemia in Macaca mulatta: relationship of aerosol particle size to the infectivity of airborne Pasteurella tularensis // Infect. Immun. — 1972. — 5(1). — 77-82.

Corbel M.J. Brucellosis: an overview // Emerg. Infect. Dis. — 1997. — 3(2). — 213-221.

Rigby C.E., Fraser A. Plasmid transfer and plasmid mediated genetic exchange in Brucella abortus // Can. J. Vet. Res. — 1989. — 53. — 326-330.

Цветков Н.Е., Черняк В.З. Сап. — М., 1935.

Илюхин В.И., Батманов В.П., Лозовая Н.А. Клиника и лечение сапа / Под ред. Н.Г. Тихонова // Сап: Сб. науч. тр. — Волгоград, 1995. — С. 85-100.

Меринова Л.К., Агеева Н.П. Генетика Pseudomonas mallei / Под ред. Н.Г. Тихонова // Сап: Сб. науч. тр. — Волгоград, 1995. — С. 19-30.

Filonov A.E., Manzeniuk I.N., Svetoch E.A. Conjugative transfer and expression of R plasmids of the genus Pseudomonas in the cells of Pseudomonas mallei C15 // Antibiot. Khimioter. — 1996. — 41(3). — 20-4.

Ip M., Osterberg L.G., Chau P.Y., Raffin T.A. Pulmonary melioidosis // Chest. — 1995. — 108. — 1420-4.

Abaev I.V., Astashkin E.I., Pachkunov D.M., Stagis N.I., Shiton V.T., Svetoch E.A. Pseudomonas mallei and Pseudomonas pseudomallei: introduction and maintenance of natural and recombinant plasmid replicons // Mol. Gen. Mikrobiol. Virusol. — 1995. — (1). — 28-36.

Меринова Л., Гришкина Т.А., Тарасова Т.Д., Антонов В.А. Генетика возбудителя мелиоидоза / Под ред. Н.Г. Тихонова // Мелиоидоз: Сб. науч. тр. — Волгоград, 1995. — С. 27-47.

Розбери Т., Кабат Э. Бактериологическая война. — М., 1955.

Ротшильд Д. Оружие завтрашнего дня. — М., 1966.

Маренникова С.С., Щелкунов С.Н. Патогенные для человека ортопоксвирусы. — М., 1998.

Chapman J.L., Nichols D.K., Martinez M.J., Raymond J.W. Animal models of Orthopoxvirus infection // Vet. Pathol. — 2010. — 47(5). — 852-70.

Jackson P.J., Ramsay A.J., Christensen C.D., Beaton S., Hall D., Ramshaw I. Expression of mouse interleukin14 by a recombinant ectromelia virus suppresses cytolytic lymphocyte responses and overcomes genetic resistаnce to mousepox // J. Virol. — 2001. — 75(3). — 1205-10.

Borio L., Inglesby T., Peters C.J., Jahrling P.B., Ksiazek T., Johnson K.M. et al. Hemorrhagic fever viruses as biological weapons. Medical and public health management // JAMA. — 2002. — 287(18). — 2391-405.

Kortepeter M., Christopher G., Cieslak T. USAMRIID’s medical management of biological casualties. Handbook. Forth Edition Editors. US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland: 2001.

Гайслер Э. Биологическое и токсинное оружие сегодня. SIPRI. — London, 1986.

Johnson E., Jaax N., White J.P. Lethal experimental infections of rhesus monkeys by aerosolized Ebola virus // Int. J. Exp. Path. — 1995. — 76. — 227-36.

Alves D.A., Glynn A.R., Steele K.E., Lackemeyer M.G., Garza N.L., Buck J.G. et al. Aerosol exposure to the Angola strain of Marburg virus causes lethal viral hemorrhagic fever in Cynomolgus macaques // Vet. Pathol. — 2010. — 47(5). — 831-51.

Callis R.T., Jahrling P.B., DePaolli A. Pathology of Lassa virus infection in the rhesus monkey // Am. J. Trop. Med. Hyg. — 1982. — 31(5). — 1938-1045.

Wittmann T.J., Biek R., Hassanin A., Rouquet P., Reed P., Yaba P. et al. Isolates of Zaire ebola virus from wild apes reveal genetic lineage and recombinants // Proc. Natl. Acad. Sci. USA. — 2007. — 104(43). — 17123-7.

Lukashevich I.S., Patterson J., Carrion R., Moshkoff D., Ticer A., Zapata J. et al. A live attenuated vaccine for Lassa fever made by reassortment of Lassa and Mopeia viruses // J. Virol. — 2005. — 79(22). — 13934-42.

Davis L.E., Beckham J.D., Tyler L.L. North American encephalitic arboviruses // Neurol. Clin. — 2008. — 26(3) (727–ix. doi:10.1016/j.ncl.2008.03.012).

Lanciotti R.S., Roehrig J.T., Deubel V., Smith J., Parker M., Steele K. et al. Origin of the West Nile virus responsible for an outbreak of encephalitis in the Northeastern United States // Science. — 1999. — 286. — 2333-7.

Huxsoll D.L., Patrick W.C., Parrott C.D. Veterinary services in biological disasters // J. Am. Vet. Med. Assoc. — 1987. — 190(6). — 714-22.

Smith J.F., Davis K., Hart M.K. et al. Viral encephalitidis / Sidell F.R., Tafuqi E.T., Franz D.R. // Medical aspects of Chemical and Biological Warfare. — Washington, 1997. — P. 561-89.

Zacks M.A., Paessler S. Encephalitic Alphaviruses // Vet. Microbiol. — 2010. — 140(3–4). — 281. — doi:10.1016/j.vetmic.2009.08.023

Greene I.P., Paessler S., Austgen L., Anishchenko M., Brault A.C., Bowen R.A., Weaver S.C. Envelope glycoprotein mutations mediate equine amplification and virulence of epizootic Venezuelan equine encephalitis virus // J. Virol. — 2005. — 79(14). — 9128-33.

Weaver S.C., Kang W.L., Shirako Y., Rumenapf T., Strauss E.G., Strauss J.H. Recombinational history and molecular evolution of western equine encephalomyelitis complex alphaviruses // J. Virol. — 1997. — 71. — 613-623.

Copyright (c) 2016 ACTUAL INFECTOLOGY

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


© Publishing House Zaslavsky, 1997-2020


   Seo анализ сайта