HIV/AIDS Pandemia — a Problem Requiring Rethinking On the 30th Anniversary of the Discovery of Human Immunodeficiency Virus

M.V. Supotnitsky

Abstract


Hazard of HIV/AIDS pandemia is greatly underestimated due to lack of understanding of its role in the processes that are not related to medicine. The principal difference between HIV/AIDS pandemia and the pandemic processes, against which the advances were made in the ХХ century, lies in the fact that it is caused by a virus of the retrovirus family. Retroviruses are ancient tools of evolution. They cause epidemia (epizooty), which are the main mechanism of discontinuous evolution of species. This mechanism is implemented by endogenization of retroviruses in the genome of the surviving species and amplification of their genome through the formation of new copies of retroelements; complexity of the genome by the formation of new exons from introns and/or increased number of genes that are alternatively spliced. Evolutionary past of the immune system of multicellular organisms suggests securing her in the process of natural selection as the reservoir with respect to retroviruses. Thanks to the cells of the immune system there is the multiplication and accumulation of exogenous retroviruses to a certain critical mass, which allows some of them to endogenize in the germline of some specimens of infected species and further transmitted vertically, changing its evolutionary trajectory. HIV/AIDS pandemia among the species homo sapiens — a common manifestation of this process in the evolution of primate taxon. Infectious and epidemic processes caused by HIV, are multicomponent non-cyclic processes that have no mechanisms for termination. To fight with them, experience gained in the XX century during smallpox eradication or in when controlling outbreaks of influenza, plague and other cyclical infections is inapplicable. Given in the article data indicate the need to develop self-control strategy to fight against non-cyclic multicomponent epidemic processes.

Keywords


HIV/AIDS pandemia; HIV vaccine; retrovirus; endogenization; retroviral evolution; transposons; retroelements

References


Аст Г. Альтернативный геном // В мире науки. — 2005. — № 7. — С. 37-43.

Бакулов И.А., Ведерников В.А., Семенихин А.Л. Эпизоотология с микробиологией. — М., 1997.

Богадельников И.В., Крюгер Е.А., Бобрышева А.В. с соавт. Появление новой педиатрической проблемы — неВИЧ-инфицированные дети, рожденные от ВИЧ-позитивных матерей, получавших антиретровирусные препараты во время беременности // Биопрепараты. — 2014. —№ 1. — C. 23-30.

Воробьев А.А. Не подводя черты. — М., 2003.

Галактионов В.Г. Эволюционная иммунология. — М., 2005.

Глобальная ликвидация оспы. Заключительный доклад Глобальной комиссии по удостоверению ликвидации оспы. — Женева, декабрь 1979 г. — ВОЗ, Женева, 1980.

Котова Н.В. Состояние здоровья детей, рожденных ВИЧ-инфицированными женщинами, и протокол их медицинского наблюдения: Дис… д-ра мед. наук. — Одесса, 2008.

Кузьмина М.Н., Чепрасова Е.В., Свиридов В.В. с соавт. Попытка иммунокоррекции аффинолейкином нарушений ревакцинаторного ответа на АКДС у ВИЧ-негативных детей, рожденных ВИЧ-инфицированными матерями после антиретровирусной химиопрофилактики // Биопрепараты. — 2010. — № 4. — С. 22-30.

Маренникова С.С., Щелкунов С.Н. Патогенные для человека ортопоксвирусы. — М., 1998.

Мац А.Н., Кузьмина М.Н., Чепрасова Е.В. Иммунизабельность ВИЧ-контактных детей и ее коррекция. — Saarbrucken: LAP Lambert Academic Publishing, 2013.

Сидорович И.Г., Бурменская О.В., Гасанов В.А. с соавт. Создание и испытание кандидатных вакцин против ВИЧ/СПИДа // Рабочее совещание по рассмотрению итогов выполнения распоряжений Правительства Российской Федерации от 25 декабря 2007 г. № 1905-р. Сборник докладов и материалов. 17-19 ноября 2010 г., Новосибирск. — Новосибирск, 2010. — С. 33-85.

Супотницький М.В. Чому ми не здолаемо ВIЛ/СНIД // Iнфекцiйнi хвороби. — 2012. — № 1 (67). — С. 88-96; № 2 (68). — С. 104-114.

Супотницкий М.В. Микроорганизмы, токсины и эпидемии. — М., 2000, 2005.

Супотницкий М.В. Почему мы зашли в тупик в противодействии ВИЧ/СПИД-пандемии // Вiруснi хвороби, ВIЛ-iнфекцiя/СНIД. Матерiалы Всеукраїнської науково-практичної конференцiї з мiжнародною участю i пленуму Ассоцiацiї инфекцiонистiв України (3–4 жовтня 2013 року, м. Алушта). — Тернопiль, 2013. — С. 163-166.

Супотницкий М.В. Предвидение Станислава Лема: что сказал и чего не сказал великий писатель о ВИЧ/СПИД-пандемии // Новости медицины и фармации. — 2013. — № 16(467), электронный ресурс: http://www.mif-ua.com/archive/article/36938.

Супотницкий М.В. Эволюционная патология. — М., 2009.

Хендерсон Д.А. Победа всего человечества // Здоровье мира. — 1980, май. — С. 3-5.

Bannert N., Kurth R. Retroelements and the human genome: New perspectives on an old relation // Proc. Natl. Acad. Sci. USA. — 2004. — Vol. 101, Suppl. 2. — P. 14572-14579.

Barré-Sinoussi F., Chermann J.C., Rey F. et al. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS) // Science. — 1983. — Vol. 220, № 4599. — P. 868-871.

Belshaw R., Katzourakis A., Pacees J. et al. High copy number in human endogenous retrovirus families is associated with copying mechanisms in addition to reinfection // Mol. Biol. Evol. — 2005. — Vol. 22, № 4. — P. 814-817.

Berger E.A., Murphy P.M., Farber J.M. Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease // Annu. Rev. Immunol. — 1999. — Vol. 17. — P. 657-700.

Buzdin A. Human-specific endogenous retroviruses // Expert Rev. Vaccines. — 2008. — Vol. 7. — P. 1405-1417.

Conticello S.G., Thomas C., Petersen-Mahrt S. Evolution of the AID/APOBEC family of polynucleotide (Deoxy)cytidine deaminases // Mol. Biol. Evol. — 2005. — Vol. 22, № 2. — Р. 367-377.

Contreras-Galindo R., Kaplan M.H., Markovitz D.M. et al. Detection of HERV-K(HML-2) viral RNA in plasma of HIV type 1-infected individuals // AIDS Res. Hum. Retroviruses. — 2006 — Vol. 22, № 10. — P. 979-984.

Contreras-Galindo R., Lopes P., Veles R. et al. HIV-1 infection increases expression of human endogenous retroviruses type K (HERV-K) in vitro // AIDS Res. Hum. Retroviruses. — 2007. — Vol. 23, № 1. — Р. 116-122.

Costas J., Naverira H. Evolutionary history of the human endogenous retrovirus family ERV9 // Mol. Biol. Evol. — 2000. — Vol. 17, № 2. — P. 320-330.

Cullen B.G. Role and mechanism of action of the APOBEC3 family of antiretroviral resistance factors // J. Virol. — 2006. — Vol. 80, №. 3. — P. 1067-1076.

de Parseval N., Heidmann T. Human endogenous retroviruses: from infectious elements to human genes // Cytogenet Genome Res. — 2005. — Vol. 110. — P. 318-332.

Deininger P., Batzer M. Mammalian retroelements // Genome Res. — 2002. — Vol. 12. — P. 1455-1465.

Downing J.F., Pasula R., Wright J.R et al. Surfactant protein a promotes attachment of Mycobacterium tuberculosis to alveolar macrophages during infection with human immunodeficiency virus // Proc. Natl. Acad. Sci. U S A. — 1995. — Vol. 92, № 11. — P. 4848-4852.

Dunlap K., Palmarini M., Varela M. et al. Endogenous retroviruses regulate periimplantation placental growth and differentiation // Proc. Natl. Acad. Sci USA. — 2006. — Vol. 103, № 39. — Р. 14390-14395.

Frost S., Wrin T., Smith D. M. et al. Neutralizing antibody responses drive the evolution of human immunodeficiency virus type 1 envelope during recent HIV infection // Proc. Natl. Acad. Sci. USA. — 2005. — Vol. 102, № 51. — P. 18514-18519.

Furano A.V. The biological properties and evolutionary dynamics of mammalian LINE-1 retrotransposons // Prog. Nucleic. Acids. Res. Mol. Biol. — 2000. — Vol. 64. — P. 255-294.

Fust G. Enhancing antibodies in HIV infection // Parasitol. — 1997. — Vol. 115. — P. 127-140.

Gallo R.C., Salahuddin S.Z., Popovic M. et al. Frequent detection and isolation of cytopathic retroviruses (HTLV-III) from patients with AIDS and at risk for AIDS // Science. — 1984. — Vol. 224, № 4648. — P. 500-503.

Goedert J.J., Sauter M., Jacobson L.P. et al. High prevalence of antibodies against HERV-K10 in patients with testicular cancer but not with AIDS // Canc. Epidemiol., Biomark. & Prevent. — 1999. — Vol. 8. — P. 293-296.

Greenwood A.D., Stengel A., Eerle V. et al. The distribution of pol containing human endogenous retroviruses in non-human primates // Virology. — 2005. — Vol. 334. — P. 203-213.

Han K., Sen S., Wang J. et al. Genomic rearrangements by LINE-1 insertion-mediated deletion in the human and chimpanzee lineages // Nucleic. Acids. Research. — 2005. — Vol. 33, № 13. — P. 4040-4052.

Hughes J.F., Coffin J.M. Human endogenous retroviral elements as indicators of ectopic recombination events in the primate genome // Genetics. — 2005. — September 12.

Kaiser S.M., Malik H.S., Emerman M. Restriction of an extinct retrovirus by the human TRIM5xZI2OaXwo4C5MptyHQ945; antiviral protein // Science. — 2007. — Vol. 316. — P. 1756-1758.

Khodosevich K., Lebedev Y., Sverdlov E. Endogenous retroviruses and human evolution // Comp. Funct. Genom. — 2002. — Vol. 3. — P. 494-498.

Kim J.H., Skountzou I., Compans R. et al. Original antigenic sin responses to influenza viruses // J. Immunol. — 2009. — Vol. 183. — P. 3294-3301.

Klein J., Nicolaidis N. The descent of the antibody-based immune system by gradual evolution // Proc. Natl. Acad. Sci. USA. — 2005. — Vol. 102, № 1. — P. 169-174.

Kono Y., Kobayashi K., Fukunaga Y. Serological comparison among various strains of equine infectious anemia virus // Arch. Gesamte Virusforsch. — 1971. — Vol. 34. — P. 202-208.

Li X., Gold B., O’Huigin C. et al. Unique features of TRIM5alpha among closely related human TRIM family members // Virol. — 2007 . — Vol. 360, № 2. — P. 419-33.

Lopez-Sanchez P., Costas J., Naveira H. Paleogenomic record of the extinction of human endogenous retrovirus ERV9 //

J. Virol. — 2005. — Vol. 79, № 11. — Р. 6997-7004.

Lusso P., Crowley R.W., Malnati M.S. et al. Human herpesvirus 6A accelerates AIDS progression in macaques // Proc. Natl. Acad. Sci. USA. — 2007. — Vol. 104, № 12. — P. 5067-5072.

McBurney S., Ross T. Viral sequence diversity: challenges for AIDS vaccine designs // Expert. Rev. Vaccines. — 2008. — Vol. 7, № 9. — P. 1405-1417.

Muller S., Wang H., Silverman G.J. et al. B-cell abnormalities in AIDS: stable and clonally-restricted antibody response in HIV-1 infection // Scand. J. Immunol. — 1993. —

Vol. 38. — P. 327-334; PMID:7692591. Available from: http://dx.doi. org/10.1111/j.1365-3083.1993.tb01734.x.

Nara P.L., Garrity R.R., Goudsmit J. Neutralization of HIV-1: a paradox of humoral proportions // FASEB J. — 1991. — Vol. 5. — P. 2437-2455.

Narayan O., Griffin D.E., Clements J.E. Virus mutation during «slow infection»: temporal development and characterization of mutants of visna virus recovered from sheep // J. Gen. Virol. — 1978. — Vol. 41. — P. 343-352.

Nicolaisen-Strouss K., Kumar H.P.M., Fitting T. et al. Natural feline leukemia virus variant escapes neutralization by a monoclonal antibody via an mino acid change outside the antibody-binding epitope // J. Virol. — 1987. — Vol. 61. — P. 3410-3415.

Ostertag E.M., Kazazian H. Biology of mammalian L1 retrotransposons // Annu. Rev. Genet. — 2001. — Vol. 35. — P. 501-538.

Pace II J.K., Feschotte C. The evolutionary history of human DNA transposons: evidence for intense activity in the primate lineage // Genome Res. — 2007. — Vol. 17. — P. 422-432.

Padow M., Lai L., Fisher R.J. et al. Analysis of human immunodeficiency virus type 1 containing HERV-K protease // AIDS Res. Hum. Retrovir. — 2000. — Vol. 16, № 18. — P. 1973-1980.

Pinter C., Siccardi A.G., Longhi R. et al. Direct interaction of complement factor H with the C1 domain of HIV type 1 glycoprotein 120 // AIDS Res. Hum. Retrovir. — 1995. — Vol. 11. — P. 577-588.

Poignard P., Saphire E.O., Parren P.W. еt al. gp120: Biologic aspects of structural features // Annu. Rev. Immunol. — 2001. — Vol. 19. — P. 253-274.

Shankarappa R., Margolick J.B., Gange S. et al. Consistent viral evolutionary changes associated with the progression of human immunodeficiency virus type 1 infection // J. Virology. — 1999. — Vol. 73, № 12. — P. 10489-10502.

Stanley J.S., Bhaduri L.M., Narayan O. et al. Topographical rearrangements of visna virus envelope glycoprotein during antigenic drift // J. Virol. — 1987. — Vol. 61. — P. 1019-1028.

Su Hua-Poo., Garman S., Allison T.J. et al. The 1.51-A structure of the poxvirus L1 protein, a target of potent neutralizing antibodies // Proc. Natl. Acad. Sci. USA. — 2005. — Vol. 102, № 12. — 4240-4245.

Tang W., Gunn T.M., McLaughlin D.F. et al. Secreted and membrane attractin result from alternative splicing of the human ATRN gene // Proc. Natl. Acad. Sci. USA. — 2000. — Vol. 97. — P. 6025-6030.

Thomas H.I., Wilson S., O’Tolle C. M. et al. Differential maturation of avidity of IgG antibodies to gp41, p24 and p17 following infection with HIV-1 // Clin. Exp. Immunol. — 1996. — Vol. 103. — P. 185-191.

Tirado S.M., Yoon K.S. Antibody-dependent enchancement of virus infection and disease // Viral. Immunol. — 2003. — Vol. 164, № 1. — P. 69-86.

Turner G., Barbulescu M., Su Mei et al. Insertional polymorphisms of full-length endogenous retroviruses in humans // Current Biology. — 2001 — Vol. 11, № 19. — P. 1531-1535.

Urnovitz H., Murphy W. Human endogenous retroviruses: nature, occurrence, and clinical implications in human disease // Clin. Microbiol. Rev. — 1996. — Vol. 9, № 1. —

P. 72-99.

Vaccination and Enrollment Are Discontinued in Phase II Trials of Merck’s Investigational HIV Vaccine Candidate. News Release, 2007. Available from http://www.drugs.com/news/vaccination-enrollment-discontinued-phase-ii-trials-merck-s-investigational-hiv-vaccine-candidate-6880.html.

Vazquez N., Greenwell-Wild T., Marinos N.J. et al. Human Immunodeficiency virus type 1-induced macrophage gene expression includes the p21 gene, a target for viral regulation // J. Virol. — 2005. — Vol. 79, № 7. — P. 4479-4491.

Vazquez P., Basualdo S., Reyes-Teran G. et al. Human Immunodeficiency virus type 1 in seronegative infants born to HIV-1-infected mothers // Virol. J. — 2006. — Vol. 3, № 52 (http://www.virologyj.com/content/3/1/52).

Wahl S., Greenwell-Wild T., Gang Peng et al. Viral and host cofactors facilitate HIV-1 replication in macrophages // J. Leukoc. Biol. — 2003. —Vol. 74. — P. 726-735.

Wahl S., Greenwell-Wild T., Vazquez N. HIV accomplices and adversaries in macrophage infection // J. Leukoc. Biol. — 2006. — Vol. 80. — P. 973-983.

Wei X., Decker J.M., Hui H. et al. Antibody neutralization and escape by HIV-1 // Nature. — 2003. — Vol. 422, № 6929. — P. 307-312.

Wyatt R., Kwong P.D., Desjardins E. et al. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody // Nature. — 1998. — Vol. 393. — P. 705-711.

Zhang H., Hoffmann F., He J. et al. Evolution of subtype C HIV-1 Env in a slowly progressing Zambian infant // Retroviro-logy. — 2005 (http://www.retrovirology.com/content/2/1/6).

Zwick M.B., Saphire E.O., Burton D.R. gp41: HIV’s shy protein // Nat. Med. — 2004. — Vol. 10. — P. 133-134.




DOI: https://doi.org/10.22141/2312-413x.3.04.2014.82459

Refbacks

  • There are currently no refbacks.


Copyright (c) 2016 ACTUAL INFECTOLOGY

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

© Publishing House Zaslavsky, 1997-2017

 

 Яндекс.МетрикаSeo анализ сайта Рейтинг@Mail.ru